Elementary Statistics	Name:
Study Guide 14	Class:
Due Date:	Score:

Your solutions must be consistent with class notes & resources.

Be Neat, Organized, and No Work \Leftrightarrow No Points

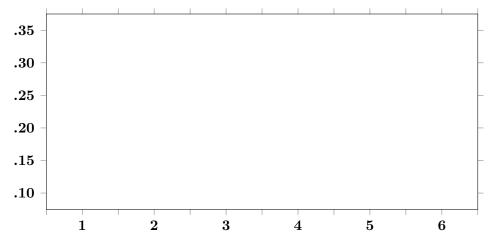
1. (3 points) Complete the table below for the discrete random variable x with the given probability distribution p(x).

x	p(x)	xp(x)	$x^2p(x)$
1	0.3		
2	0.5		
3	0.2		

(a) (2 points) Find μ using the formula.

(b) (2 points) Find σ^2	in reduced fraction using the formula.	(a)
		(b)

(c) (2 points) Find σ using the formula.


2. (2 points) A probability distribution has a mean of 70 and the standard deviation of 7.5. Find its usual range.

(c) _____

3. Let x be the number of text messages that you receive while you are in class, and P(x) be the probability of x text messages that you receive while you are in class. Consider the probability distribution table given below:

x	1	2	3	4	5
P(x)	0.15	0.20	0.25	0.30	0.10

(a) (3 points) Draw the probability distribution histogram.

For the number of text messages that you receive while in class, find (b) (2 points) the mean. Round to a whole number.

(b) _____(b) _____(b) _____(b) _____(b) _____(b) ____(b) ___(b) ___(b) ____(b) ___(b) __(b) ___(b) ___(b) ___(b) ___(b) _

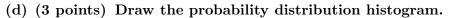
(d) (2 points) the value of variance in reduced fraction.

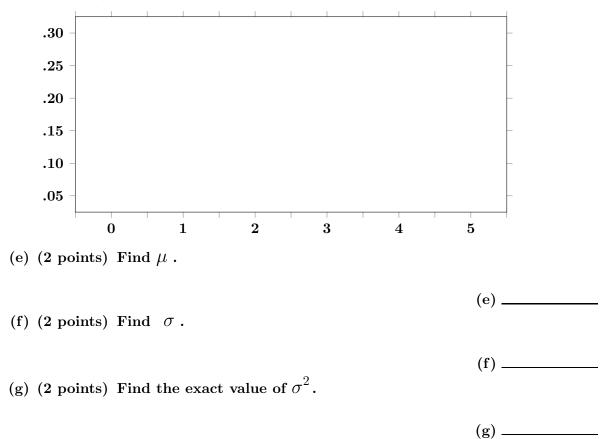
(e) (2 points) its 68% range by using the rounded answers.

(e) _____

(d) _____

4. The number of customers in line at a local supermarket self-checker is a random variable with the following probability distribution given below:


x	0	1	2	3	4	5
P(x)	0.10	0.25		0.20	0.10	0.05


- (a) (2 points) Find P(x=2).
- (b) (2 points) Find $P(x \le 2)$.
- (c) (2 points) Find $P(x \ge 2)$.

(c) _____

(b) _____

(a) _____

5. (3 points) The General Social Survey asked 1000 people about how many hours per day they were able to relax. Consider these 1000 people to be a population, and let x be the number of hours of relaxation for a person at random from this population. The results are presented in the following table. Complete the probability distribution for the number of hours of relaxation time x.

Number of Hours	0	1	2	3	4	5	6	7
Frequency	54	96	166	245	175	135	85	44
Probability of Relaxation Time	$\frac{54}{1000} =$.054		$\frac{166}{1000} =$.166		$\frac{175}{1000} =$.175			$\frac{44}{1000} =$.044

(a) (2 points) Find the probability that a person relaxes at most 3 hours.

(a) ______ (b) (2 points) Find the probability that a person relaxes at least 3 hours.

(c) (2 points) Find μ . Round up to a whole number.

(d) (2 points) Find σ . Round up to a whole number.

(e) (2 points) Using the rounded answers, find the usual range according to the empirical rule.

(e) _____

Make a reference sheet of all formulas and how/when to use them.

(b) _____

(c) _____

(d) _____